Contents

1 Energetic Beam Synthesis of Dilute Nitrides and Related Alloys

K.M.	Yu, M.A. Scarpulla, W. Shan, J. Wu, J.W. Beeman,					
J. Ja	sinski, Z. Liliental-Weber, O.D. Dubon, and W. Walukiewicz	1				
1.1	Introduction	1				
1.2	Ion Beam Synthesis of Dilute Nitrides					
1.3	Ion Implantation and Pulsed-Laser Melting	8				
1.4	Synthesis of Dilute Nitrides by Ion Implantation					
	and Pulsed-Laser Melting	10				
1.5	Maximum Carrier Concentration and Mutual Passivation	17				
1.6	Synthesis of Dilute II–VI Oxides by Ion Implantation					
	and Pulsed-Laser Melting	20				
1.7	Photovoltaic Applications of Highly Mismatched Alloys	26				
1.8	Conclusions	29				
Pofor	ences	30				
2 Im	apact of Nitrogen Ion Density on the Optical					
2 Im and (100)	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells					
2 Im and (100) J. Ma and	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, A. Trampert	35				
2 Im and (100) J. Ma and 2	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, 4. Trampert	35 36				
2 Im and (100) <i>J. Ma</i> and <i>2</i> 2.1	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, 4. Trampert Introduction 2.1.1	35 36 36				
2 Im and (100) <i>J. Ma</i> <i>and A</i> 2.1	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, 4. Trampert Introduction 2.1.1 Overview 2.1.2 Material Properties, Nitrogen Plasmas, and (111)B	35 36 36				
2 Im and (100) <i>J. Ma</i> <i>and A</i> 2.1	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, A. Trampert 1ntroduction 2.1.1 Overview 2.1.2 Material Properties, Nitrogen Plasmas, and (111)B Experimental Setup	35 36 36 36				
2 Im and (100) <i>J. Ma</i> <i>and A</i> 2.1 2.2 2.3	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, 4. Trampert 1ntroduction 2.1.1 Overview 2.1.2 Material Properties, Nitrogen Plasmas, and (111)B Experimental Setup Plasma Characterization	35 36 36 37 38				
2 Im and (100) <i>J. Ma</i> <i>and 2</i> 2.1 2.2 2.3	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, 4. Trampert 1ntroduction 2.1.1 Overview 2.1.2 Material Properties, Nitrogen Plasmas, and (111)B Experimental Setup Plasma Characterization 2.3.1 Basic Characterization	35 36 36 37 38 38				
2 Im and (100) <i>J. Ma</i> <i>and 2</i> 2.1 2.2 2.3	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, 4. Trampert 1ntroduction 2.1.1 Overview 2.1.2 Material Properties, Nitrogen Plasmas, and (111)B Experimental Setup Introduction 2.3.1 Basic Characterization 2.3.2 The Modified Langmuir Probe Method	35 36 36 37 38 38 38 40				
2 Im and (100) <i>J. Ma</i> <i>and 2</i> 2.1 2.2 2.3	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, 4. Trampert 1ntroduction 2.1.1 Overview 2.1.2 Material Properties, Nitrogen Plasmas, and (111)B Experimental Setup Plasma Characterization 2.3.1 Basic Characterization 2.3.2 The Modified Langmuir Probe Method 2.3.3 Application of Magnetic Fields to Nitrogen Plasmas	$35 \\ 36 \\ 36 \\ 37 \\ 38 \\ 40 \\ 44$				
2 Im and (100) <i>J. Ma</i> <i>and 2</i> 2.1 2.2 2.3	apact of Nitrogen Ion Density on the Optical Structural Properties of MBE Grown GaInNAs/GaAs) and (111)B Quantum Wells iguel-Sánchez, Á. Guzmán, A. Hierro, E. Muñoz, U. Jahn, 4. Trampert 1ntroduction 2.1.1 Overview 2.1.2 Material Properties, Nitrogen Plasmas, and (111)B Experimental Setup Plasma Characterization 2.3.1 Basic Characterization 2.3.2 The Modified Langmuir Probe Method 2.3.3 Application of Magnetic Fields to Nitrogen Plasmas 4	35 36 36 37 38 40 44 45				

2.6 The Role of Ions on GaInNAs/GaAs (100) QWs	50
2.6.1 Optical Characterization	51
2.6.2 Structural Characterization	54
2.7 Conclusions	60
References	61
	-
3 Electronic Band Structure	
of Highly Mismatched Semiconductor Alloys	
W. Walukiewicz, K. Alberi, J. Wu, W. Shan, K.M. Yu,	
and J.W. Ager III	65
3.1 Introduction	65
3.2 Localized Impurities	66
3.3 The Band Anticrossing Model	67
3.4 Experimental Investigation of Dilute III–N–V Alloys	72
3.4.1 Interband Transitions in Dilute Nitrides	73
3.4.2 Electronic Properties of Dilute Nitrides	80
3.5 Valence Band Anticrossing	82
3.6 Conclusions	86
References	87

4 Electronic Structure of GaN_xAs_{1-x} Under Pressure

<i>I. G</i>	orczyca,	P. Boguslawski, A. Svane, and N.E. Christensen	91			
4.1	Introduction					
4.2	Metho	odology	93			
	4.2.1	Bandgap Adjustment	95			
	4.2.2	Accuracy of the Supercell Method	97			
	4.2.3	Group-Theoretical Discussion of Electronic States	97			
4.3	Featu	es of the $\operatorname{GaN}_x \operatorname{As}_{1-x}$ Band Structures	98			
	4.3.1	Effects of Lattice Relaxation	99			
	4.3.2	Composition Dependence of the Bandgap	100			
	4.3.3	Optical Transitions to E_{-} and E_{+}	102			
	4.3.4	Effects of Hydrostatic Pressure	105			
	4.3.5	Discussion of the Origin of the E_+ Edge	108			
4.4	Condu	action Band Mass vs. Composition, Pressure,				
	and W	Vavevector	109			
4.5	Summ	ary	116			
Refe	rences .		117			
к Г,	un onim	ontal Studios of CoInNAs				
Con	duction	a Band Structure				
			109			
C. S	kierbisz	ewski	123			
5.1	Introd	uction	123			
5.2	GaInN	VAs Electron Effective Mass				
	and C	onduction Band Dispersion	125			

5.2.1Effective Mass Determination1255.2.2Giant Nonparabolicity of the GaInNAs Conduction Band129

Contents XIII

5.3 5.4 5.5	5.2.3 5.2.4 Interba Dielect Effectiv 5.5.1 5.5.2 5.5.3 Conclu	Effective Mass at the Bottom of the Conduction Band Pressure Dependence of the Effective Mass for $k \sim 0$ and Absorption of Free-Standing Epitaxial Layers rric Function and the Critical Point Transitions we g^* -Factors for Electrons and Holes Effective g^* -Factor for the E Conduction Band Effective g^* -Factors for the E_+ Conduction Band and the Valence Bands Electron Effective Mass at the Bottom of the E Band	$131 \\ 137 \\ 139 \\ 142 \\ 146 \\ 151 \\ 154 \\ 155 \\ 157 \\ 150 $
Refer	ences .	• • • • • • • • • • • • • • • • • • • •	158
6 Ele	ectrom	odulation Spectroscopy of GaInNAsSb/GaAs	
Quar	ntum V	Wells: The Conduction Band Offset	
and	the Ele	ectron Effective Mass Issues	1.09
J. Ml	Introdu	R. Kuarawiec, M. Gladysiewicz, and J.S. Harris	163
0.1 6 9	Europei	netton	164
0.2	Experi	tical Approach	104
6.4	Populto	and Disgussion	171
0.4	6 4 1	Identification of Contacless Electroraflectance Resonances	$171 \\ 171$
	6.4.2	Conduction Band Offset	111
	0.4.2	and Electron Effective Mass Determination	179
	643	Influence of Remaining Parameters and Possible Errors	175
65	Summe	arv and Outlook	176
Refer	ences		177
100101			111
7 Th	e Effe	cts of Nitrogen Incorporation	
on P	hotoge	nerated Carrier Dynamics in Dilute Nitrides	
S. M	azzucato	and R.J. Potter	181
7.1	Introdu	uction	181
7.2	Excitor	n Localisation	183
7.3	Localis	sation in Dilute Nitrides	184
	7.3.1	Photoluminescence Lineshape	
		and S-Shape Temperature Dependence	184
	7.3.2	Nearest Neighbour Configurations in Dilute Nitrides	188
	7.3.3	Time Resolved Photoluminescence	188
_	7.3.4	Excitation Intensity Dependence	190
7.4	Reduci	ng Localisation	191
	7.4.1	Thermal Annealing	191
	7.4.2	Antimony incorporation	194
7.5	Summa	ary	194
Refer	ences .		195

XIV Contents

8 Inf	fluence of the Growth Temperature	
on tł	ne Composition Fluctuations	
of G	aInNAs/GaAs Quantum Wells	
М. Н	errera, D. Gonzalez, M. Hopkinson, H.Y. Liu, and R. Garcia	199
8.1	Introduction	199
8.2	Experimental	201
8.3	Composition Fluctuations in GaInNAs Studied	
	by Transmission Electron Microscopy in Diffraction Contrast	201
8.4	Spinodal Decomposition in GaInNAs	209
8.5	Increase of the Composition Fluctuations with Temperature	215
8.6	Summary and Future Trends	218
Refer	ences	219
9 As	sessing the Preferential Chemical Bonding of Nitrogen	
in N	ovel Dilute III–As–N Alloys	
D.N.	Talwar	223
9.1	Introduction	223
9.2	Local Vibrational Mode Spectroscopy	225
	9.2.1 Vibrational Modes of Light Impurities in GaAs	226
	9.2.2 Local Vibrational Mode of Nitrogen in GaAs and InAs	227
	9.2.3 Bonding of Nitrogen in $Ga_{1-x}In_xN_yAs_{1-y}$ Alloys	231
9.3	Theoretical	234
	9.3.1 Ab Initio Method	235
	9.3.2 Green's Function Technique	235
	9.3.3 Numerical Computations and Results	237
9.4	Discussion and Conclusion	248
Refer	ences	250
10 T	he Hall Mobility in Dilute Nitrides	
M.P.	Vaughan and B.K. Ridley	255
10.1	Introduction	255
10.2	Non-Parabolicity in Dilute Nitrides	257
10.3	The Hall Mobility	261
10.4	The Ladder Method	263
10.5	Ladder Coefficients in a Non-Parabolic Band	268
10.6	Elastic Scattering Processes	275
	10.6.1 Alloy Scattering	275
	10.6.2 Other Elastic Processes	276
10.7	Results and Conclusions	279
Refer	ences	280
11 S	pin Dynamics in Dilute Nitride	
X M	Tarie, D. Lagarde, V. Kalevich, and T. Amand	283
11.1	Introduction	283
11.2	Samples and Experimental Set-Up	284
11.3	Experimental Results	285
0		-00

11.4 11.5 Refer	Electron Spin Dynamics and Spin-Dependent Recombination Conclusion	290 297 298
12 C	Optical and Electronic Properties of GaInNP Alloys:	
AN	ew Material for Lattice Matching to GaAs	0.01
<i>I.A.</i>	Buyanova and W.M. Chen	301
12.1	Introduction	301
12.2 12.2	Compositional and Temperature Dependences	302
12.0	of Bandgan Energies	305
	12.3.1 Compositional Dependence	305
	12.3.2 Temperature Dependence	307
12.4	Band Alignment in GaInNP/GaAs Heterostructures	308
	12.4.1 PL Up-Conversion in GaInNP/GaAs Heterostructures	309
	12.4.2 Interface-Related Emission	312
	12.4.3 Band Offsets at the GaInNP/GaAs Interface	313
12.5	Summary	314
Refer	rences	314
13 F	Properties and Laser Applications	
of th	e GaP-Based GaNAsP-Material System for Integration	
to Si	i Substrates	
<i>B. K</i>	unert, K. Volz, and W. Stolz	317
13.1	Introduction	317
13.2	Growth and Structural Properties	320
	13.2.1 GaInNAsP Growth	320
	13.2.2 Structural Properties of GaInNAsP/GaP	324
13.3	Optical Properties and Band Structure	330
13.4	Laser Devices	337
13.5	Summary	339
Refer	rences	341
14 C	Comparison of the Electronic Band Formation	
and	Band Structure of GaNAs and GaNP	
М. С	Güngerich, P.J. Klar, W. Heimbrodt, G. Weiser, A. Lindsay,	
C.~H	arris, and E.P. O'Reilly	343
14.1	History of Dilute-N III–V Semiconductor Alloys	
	and Corresponding Optoelectronic Devices	344
14.2	Luminescence Characteristics of GaN_xAs_{1-x} and GaN_xP_{1-x}	347
14.3	Electronic Density of States in GaN_xAs_{1-x} and GaN_xP_{1-x}	351
14.4	Theory of Band Formation in Dilute Nitride Semiconductors	358
14.5 D (Uonclusions	363
neier	Tences	304

XVI Contents

15	Doping,	Electrical	Properties	and	\mathbf{Solar}	\mathbf{Cell}	Application
of	GaInNA	S					

K. V	olz, W. Stolz, J. Teubert, P.J. Klar, W. Heimbrodt, F. Dimroth,	
C. Be	aur, and A.W. Bett	369
15.1	Introduction	369
15.2	GaInNAs Growth and Doping	371
15.3	Carrier Transport Properties	378
	15.3.1 Hall Measurements	378
	15.3.2 Magnetoresistance Measurements	381
	15.3.3 Thermopower Measurements	386
15.4	Annealing Effects on Structural and Optical Properties	388
	15.4.1 Structural Properties	388
	15.4.2 Optical Properties	395
15.5	Solar Cell Characteristics	400
15.6	Summary	401
Refer	ences	402
16 E	lemental Devices and Circuits for Monolithic	
Opto	belectronic-Integrated Circuit Fabricated	
in D	islocation-Free Si/III–V-N Alloy Layers Grown	
on S	i Substrate	
<i>H.</i> Ye	onezu	405
16.1	Introduction	405
16.2	Growth of Structural Defect-Free Si/(In)GaPN Layers	
	on Si Substrate	406
16.3	Optical and Electrical Properties of GaPN and InGaPN	408
16.4	Monolithic Implementation of Elemental Devices	
	for Optoelectronic-Integrated Circuits	412
16.5	Summary	416
Refer	ences	417
17 1	nalyzia of CoInNAg Paged Devices	
	marysis of Gaminas-Dased Devices:	
	lowen dremoulos M. L. Adams and L. Porison	410
D. At	Introduction	419
17.0	Dond Staucture	419
11.2	17.0.1 Comment Commissioner	420
	17.2.1 General Considerations	420
	17.2.2 Parameterization of the Band Anticrossing Model	422
	17.2.5 Band Lineup	423
17.9	17.2.4 Implementation of the Band Structure Model	423
17.3	Optical Properties of GalmNAs Alloys	424
	17.3.1 GainNAS Material Gain	425
	17.3.2 N-Positional Dependence of Material Gam	426
	17.3.3 Comparison of GalnNAs and GalnAsP Material Gain	428

17.3.4 Differential Gain 428

Contents	XVII

	17.3.5 Differential Refractive Index	431
	17.3.6 Linewidth Enhancement Factor	431
17.4	Laser Design Considerations	433
	17.4.1 Effect of In and N Composition	
	on the Transition Wavelength	434
	17.4.2 Effect of In and N Composition	
	on the Optical Properties	436
17.5	GaInNAs Based Semiconductor Optical Amplifiers	439
	17.5.1 Polarization Sensitive GaInNAs Semiconductor	
	Optical Amplifiers	439
	17.5.2 Polarization Insensitive GaInNAs SOAs	444
17.6	Conclusion	446
Refer	ences	446
10 D	Nilata Nitari la Oscartana Wall Lanana	
18 D	Jute Nitride Quantum well Lasers	
N T	and and I. I. Manut	4.40
IV. 10	Insu ana L.J. Mawsi	449
18.1	Metalorgania Chemical Vanor Deposition Crown	449
10.2	$C_{2}In(N)A_{5}$ Quantum Well	451
183	Lasing Characteristics of 1 200 nm CaInAs	451
18.0	Lasing Characteristics of CaInNAs Quantum Wall Lasors	450
18.5	1 300 nm CalnNAs Multiple Quantum Well Lasers	400
18.6	1 300 nm GalmVAs Single Quantum Well Lasers	400
10.0	with Higher N Content	464
187	1 320 nm GaInNAs Quantum Well Lasers with GaNAs Barriers	466
18.8	Comparison of Metalorganic Chemical Vapor Deposition	100
10.0	GaInNAs with Other GaInNAs in 1 300 nm Regimes	471
18.9	Single-Mode Ridge Waveguide 1.300 nm GaInNAs Quantum	111
10.0	Well Lasers	472
18.10	Extension of GaInNAs Quantum Well Lasers Beyond 1.320 nm	475
18.11	Temperature Analysis of the GaInNAs QW Lasers	480
18.12	Thermionic Emission Lifetime	
	of GaInNAs Quantum Wells Lasers	485
18.13	Experimental Evidence of the Existence of Carrier Leakages	490
18.14	Extending the Emission Wavelength to 1,550 nm Regimes	495
18.15	Conclusions	496
Refer	ences	497
19 Iı	nterdiffused GaInNAsSb Quantum Well on GaAs	
for 1	,300–1,550 nm Diode Lasers	
R.A.	Arif and N. Tansu	503
19.1	Introduction	504
19.2	Design of the Interdiffused GaInAsNSb Quantum Well	505
19.3	Band Lineups of GaInNAsSb Material Systems	507

XVIII Contents

19.4	Computational Model of Sb–N Quantum Well Intermixing	508
	19.4.1 Sb–N Interdiffusion Model	508
10 5	19.4.2 Ga(N)As–GaIn(NAs–GaIn(N)AsSb Energy Band Lineup	509
19.5	Interdiffused GalnAsSb–GalnNAs Quantum Well Structure	514
19.6	Optimization for Interdiffused GaInNAsSb Quantum Well	
10 -	at 1,550 nm Regime	515
19.7	Strain-Compensated Interdiffused GaInAsSb–GaNAs	F10
10.0	Quantum wen Structure	910
19.8	Experiments on the Interdiffusion of SD- and N-Species	E10
10.0	III GaAs	510
19.9 Defei	Summary	521
neiei	rences	322
20 \	Vertical Cavity Semiconductor Optical Amplifiers Based	
on L	Dilute Nitrides	505
S. C.	alvez and N. Laurand	525
20.1	Introduction	525
20.2	20.2.1 Device Description and Theory	520
	20.2.1 Device Description	520
<u> </u>	20.2.2 Amplification Analysis Using Rate Equations	028 594
20.3	Continuous-wave Experimental Demonstrations	534 594
	20.3.1 Devices	554 525
	20.3.2 Amplification Characterization Setup	999
	20.5.5 Reflective 1,500 fill GalinvAs vertical Cavity Somiconductor Optical Amplifier in Operation	527
	20.3.4 Optimization and Noise of 1.300 nm CalnNAg Vortical	007
	20.5.4 Optimization and Noise of 1,500 nm Gamiyas vertical	540
	20.3.5 Tunability	540
	20.3.6 Material Parameter Extraction	545
20.4	Gain Dynamics	550
20.1	20.4.1 Measurement Method	000
	and Associated Theoretical Remarks	551
	20.4.2 Experimental Setup	552
	20.4.3 VCSOA Dynamics Measurement	553
20.5	Extension to the 1.550 nm Band	555
20.6	Conclusion	559
Refe	rences	560
		000
21 L	Dilute Nitride Photodetector and Modulator Devices	500
J.B.	Heroux and W.I. Wang	563
21.1 21.2	Introduction	563
41.4	and Modulator Devices	566
	21.2.1 Material Crowth	566
	21.2.1 Waterial Growth	567
		007

21.3	p–i–n Photodetectors	0
	21.3.1 GaInNAs:Sb Resonant Cavity-Enhanced Photodetector	
	Operating at $1.3 \mu m$	0
	21.3.2 Subsequent Results	4
	21.3.3 Alternatives Devices	5
21.4	Photodetectors with Gain 57	6
	21.4.1 Heterojuntion Phototransistors 57	6
	21.4.2 Avalanche Photodiodes 58	0
21.5	Modulators	1
Refer	rences	4
Inde	Index	